Другие журналы

электронный журнал

МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51038. ISSN 2307-0609

Публикации с ключевым словом - аппроксимация полугрупп

Найдено: 3
77-30569/239563 Формула Фейнмана для полугрупп с мультипликативно возмущенными генераторами
# 10, октябрь 2011
Бутко Я. А.
В работе рассматривается динамика эволюционной системы при мультипликативном возмущении генератора соответствующей эволюционной полугруппы. Найдена формула (Фейнмана), позволяющая аппроксимировать возмущенную динамику, по исходной. Таким образом, получена новая формула для описания и исследования свойств возмущенной динамики. В некоторых частных случаях найденная формула Фейнмана  дает аппроксимации в виде кратных интегралов только от элементарных функций, что позволяет использовать эту формулу для непосредственных вычислений и компьютерного моделирования исследуемой динамики.
77-30569/251251 Формулы Фейнмана для семейства параболических уравнений, соответствующих тау-квантованию квадратичной функции Гамильтона
# 11, ноябрь 2011
Бутко Я. А., Дурягин А. В.
Рассмотрено семейство параболических уравнений второго порядка, порожденных различными видами квантования квадратичной функции Гамильтона некоторой классической системы. Решение задачи Коши--Дирихле для рассмотренного семейства уравнений на отрезке представлено в виде гамильтоновой формулы Фейнмана, то есть в виде предела конечнократных интегралов от элементарных функций при стремлении кратности к бесконечности. Тем самым, в работе получена новая формула, пригодная для непосредственных вычислений решения поставленной задачи и компьютерного моделирования соответствующей динамики. В работе также обсуждается связь между дифференциальными операторами, соответствующими различным типам квантования квадратичной функции Гамильтона, и связь полученной гамильтоновой формулы Фейнмана с интегралами Фейнмана по траекториям в фазовом пространстве.
Формулы Фейнмана для параболического уравнения с бигармоническим дифференциальным оператором на конфигурационном пространстве
# 08, август 2012
DOI: 10.7463/0812.0445534
Бузинов М. С., Бутко Я. А.
В статье рассматривается задача Коши для параболического уравнения в частных производных с бигармоническим оператором и аддитивным возмущением по пространственной переменной. Подобные уравнения используются в различных областях физики, химии, биологии и компьютерных наук.  Получены представления решения поставленной задачи  с помощью формул Фейнмана, т.е. пределов кратных интегралов от элементарных функций при стремлении кратности к бесконечности. Основная часть  формул Фейнмана доказана с помощью теоремы Чернова; некоторые  формулы получены на основании  аппроксимаций Иосиды. В работе представлены различные типы формул Фейнмана: гамильтоновы и лагранжевы.   Лагранжевы формулы Фейнмана подходят  для   численного моделирования динамики эволюционной системы. Гамильтоновы формулы Фейнмана связаны  с некоторыми интегралами Фейнмана по траекториям в фазовом пространстве; такие интегралы  являются важными объектами квантовой физики.
 
ПОИСК
 
elibrary crossref neicon rusycon
 
ЮБИЛЕИ
ФОТОРЕПОРТАЖИ
 
СОБЫТИЯ
 
НОВОСТНАЯ ЛЕНТА



Авторы
Пресс-релизы
Библиотека
Конференции
Выставки
О проекте
Rambler's Top100
Телефон: +7 (499) 263-61-98
  RSS
© 2003-2017 «Молодежный научно-технический вестник» Тел.: +7 (499) 263-61-98